Energy efficiency of actuators with DC motors

ir. Tom Verstraten

Stiff actuators

Typical topology

How to improve efficiency?

Bypass the lossy components

Introduce an energy storage buffer at the output!

Series or Parallel? A performance perspective

Series

- Decoupling of motor and load (additional DOF)
 = increased safety
- Force control
- Extra antiresonance frequency
- Reduction of motor speed

Parallel

- No decoupling of motor and load
 no increase in safety
- Position control
- Shift of resonance frequency
- Reduction of motor torque

Series or Parallel? An efficiency perspective

Grimmer et al., A Comparison of Parallel- and Series Elastic Elements in an actuator for Mimicking Human Ankle Joint in Walking and Running (2012)

Series or Parallel?

But... energy calculated as:

$$\mathsf{Energy} = \int |P_{load}| dt$$

- Absolute value
- Only mechanical energy, no (speed- and load-dependent) gearbox, motor and controller losses!

Gearbox efficiency

- Strong decrease at low torques
- Small dependence on input speed

Motor efficiency

- Max. efficiency only in small region
- Difference between negative-power and positive-power quadrants
- Two zero-efficiency regions
- Resistive losses more crucial

DC Motor efficiency map

Case study: driven pendulum

Example calculation

TABLE III

MEASURED AND MODELED ENERGY CONSUMPTION FOR ONE PENDULUM PERIOD, AT FREQUENCIES OF 0.5, 1 AND 2 RAD/S.

		0.5 rad/s	1 rad/s	2 rad/s	1
measured		<mark>51.08 J</mark>	29.90 J	18.30 J	→ Measured values
1QCE	Eelec	46.32 J	22.53 J	9.87 J	No load- and speed-
	$E_{elec,abs}$	49.37 J	36.15 J	28.76 J	
4QCE	Eelec	45.51 J	27.30 J	16.57 J	dependency
	$E_{elec,abs}$	45.51 J	30.14 J	21.96 J	
4QCEI	E_{elec}	45.31 J	26.88 J	15.68 J	
	$E_{elec,abs}$	45.31 J	29.46 J	<u>19.65 J</u>	Load- and speed-
FMM	E_{elec}	52.10 J	29.09 J	16.02 J	\rightarrow dependent DC meter
	$E_{elec,abs}$	52.10 J	31.34 J	19.87 J	dependent DC motor
					model

Verstraten et al., Energy Consumption of Geared DC Motors: Comparing Modeling Approaches (2015)

So what about VSAs?

Theoretical study on pendulum setup

Series Elastic Actuator Peak power

Properties

- 2 resonance frequencies (2nd only at small angles)
- 1 antiresonance frequency (strongly dependent on spring stiffness)

Series Elastic Actuator Energy consumption

Properties

- Lowest energy consumption at resonance and antiresonance
- High energy consumption at low stiffness
- Resistive losses at antiresonance

$$P_{elec} = \frac{T + v\theta}{k_t} \cdot \left(R \frac{T + v\theta}{k_t} + k_0 \theta \right)$$

$$_{elec} = R \frac{T^2}{k_t^2}$$

Parallel Elastic Actuator Peak power

Properties

 1 resonance frequency, strongly dependent on spring stiffness

Parallel Elastic Actuator Energy consumption

Properties

- Minimum consumption at resonance frequency (controllable)
- Damping (viscous friction) at resonance

$$P_{elec} = \frac{T + \upsilon \dot{\theta}}{k_t} \cdot \left(R \frac{T + \upsilon \dot{\theta}}{k_t} + k_b \dot{\theta} \right) \qquad \qquad P_{elec} \approx \frac{\upsilon k_b \dot{\theta}^2}{k_t} = \upsilon \dot{\theta}^2$$

Conclusions

- Load-and speed-dependency of motor and gearbox losses cannot be neglected
- Parallel vs. Series topology have very different properties:

Series

- Exploiting stiffnessdependency of antiresonance
- Reduction of motor speed
- Resistive (Joule) losses dominate
- Electrically less efficient at antiresonance

Parallel

- Exploiting stiffnessdependency of resonance
- Reduction in motor torque
- Damping (friction) losses dominate
- Electrically more efficient at resonance

